TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Definitions</td>
<td>4</td>
</tr>
<tr>
<td>What is an Interface Agreement?</td>
<td>6</td>
</tr>
<tr>
<td>Legislative Considerations</td>
<td>7</td>
</tr>
<tr>
<td>Rail Safety National Law (South Australia) Act 2012</td>
<td>7</td>
</tr>
<tr>
<td>Interface Coordination – rail infrastructure and private roads</td>
<td>7</td>
</tr>
<tr>
<td>Refuse or fail to enter into an interface agreement</td>
<td>7</td>
</tr>
<tr>
<td>Register of interface agreements</td>
<td>7</td>
</tr>
<tr>
<td>Railways (Operations and Access) Act 1997</td>
<td>8</td>
</tr>
<tr>
<td>Work Health and Safety Act 2012</td>
<td>8</td>
</tr>
<tr>
<td>Local Government Act 1999</td>
<td>8</td>
</tr>
<tr>
<td>Road Traffic Act 1961</td>
<td>8</td>
</tr>
<tr>
<td>Completing the template interface agreement</td>
<td>9</td>
</tr>
<tr>
<td>Schedule 1 – Related Documents</td>
<td>10</td>
</tr>
<tr>
<td>WHS Policies & Procedures</td>
<td>10</td>
</tr>
<tr>
<td>Engineering and technical standards, guidelines and operating instructions</td>
<td>11</td>
</tr>
<tr>
<td>Schedule 2 – Register of Interfaces</td>
<td>12</td>
</tr>
<tr>
<td>Schedule 3 - General maintenance responsibilities</td>
<td>12</td>
</tr>
<tr>
<td>Standards and compliance</td>
<td>13</td>
</tr>
<tr>
<td>Schedule 4 - Identification, Assessment and Management of Risk</td>
<td>14</td>
</tr>
<tr>
<td>Identification</td>
<td>14</td>
</tr>
<tr>
<td>Assessment</td>
<td>14</td>
</tr>
<tr>
<td>Management</td>
<td>15</td>
</tr>
<tr>
<td>Monitor and review</td>
<td>15</td>
</tr>
<tr>
<td>Schedule 5 – Communications and meetings</td>
<td>15</td>
</tr>
<tr>
<td>Specific Matters</td>
<td>16</td>
</tr>
<tr>
<td>Dormant, disused and closed rail (non-operational) corridors</td>
<td>16</td>
</tr>
<tr>
<td>Closure of rail or road crossings</td>
<td>17</td>
</tr>
<tr>
<td>New level crossings</td>
<td>18</td>
</tr>
<tr>
<td>Infrastructure Changes</td>
<td>19</td>
</tr>
<tr>
<td>Street lighting</td>
<td>20</td>
</tr>
</tbody>
</table>
INTRODUCTION

Historically in South Australia the management of level crossings was primarily with government-owned railway authorities. While arrangements with road authorities in relation to the shared management and maintenance responsibilities have evolved, until recently there has been no formal requirement for the joint management of risks to safety that arise at a rail or road crossing (the rail-road interface).

The *Rail Safety National Law (South Australia) Act 2012* was introduced to ensure rail infrastructure managers and road managers identify risks to safety arising at the crossing of rail and road interfaces. This requires Local Government (and any other road authorities) to enter into an agreement with rail infrastructure managers about the way they will manage risks at rail or road crossings. It is expected that the combined expertise and knowledge of both authorities will enhance safety management of these rail or road crossing interfaces.

This guide provides an outline of the obligations under the rail safety legislation to Local Government as road managers in relation to the risk management and safety at railway interfaces in South Australia. It is intended to ensure that risks arising from rail or road crossings are identified and accountabilities for risk control measures are clearly articulated.
The following definitions are provided for information only. The meanings have been taken from different pieces of legislation or are recognised industry terms relevant to understanding this guide:

ALCAM - the Australian Level Crossing Assessment Model used to assess and identify potential risks at Level Crossings.

Danger Zone - all space within 3 metres horizontally and vertically from the outermost rail or electrification infrastructure.

Interface - where the Rail Infrastructure Manager’s rail network and the Road Manager’s maintained road network intersect at a Rail or Road Crossing.

Interface Agreement – an agreement about managing risk to safety identified and assessed under the Rail Safety National Law.

Interface Boundary - the point where responsibility changes from one party to another. The boundaries for each Interface are expected to be described (and agreed by both parties) as part of an Interface Agreement.

Rail or Road Crossing includes:
- a bridge carrying a road over a railway and a bridge carrying a railway over a road;
- **railway crossing** - any area where a footpath or shared path crosses a railway at substantially the same level;
- **level crossing** - an area where a road and a railway meet at substantially the same level, whether or not there is a level crossing sign on the road at all or any of the entrances to the area.

Crossing with Active Warning Devices – Vehicle and pedestrian traffic controlled at railway level crossing by devices such as flashing light signals, bells or other audible warning devices, gates or barriers, or a combination of these. The device is activated prior to and during the passage of a train or tram.

Crossing with Passive Warning Devices - Vehicle and pedestrian traffic controlled at railway level crossing by signs or devices, which rely on the user detecting the approach or presence of a train by direct observation.

Private Crossing - a Level Crossing provided to permit access to private property or to extend access between parts of private property.

Rail Corridor - from fence line to fence line, or if there are no fences everywhere within 15 metres of the outermost rails.

Rail Infrastructure - the facilities that are necessary to enable a railway to operate safely and includes, but is not limited to:
- railway tracks and associated track structures;
- service roads, signalling systems, communications systems, control systems and data management systems;
- notices and signs;
- electrical power supply and electric traction systems;
Rail Infrastructure Manager, in relation to Rail Infrastructure of a railway, means the person who has effective management and control of the Rail Infrastructure, whether or not the person owns the Rail Infrastructure or has a statutory or contractual right to use the Rail Infrastructure or to control, or provide, access to it.

Rail Safety Officer – Competent Track Worker responsible for keeping the worksite and workers safe. Also known as a Protection Officer (PO), Track Safety Worker or Spotter.

Road - *Road Traffic Act 1961* – means an area that is open to or used by the public and is developed for, or has as one of its main uses, the driving of motor vehicles.

Further, the *Local Government Act 1999* defines a road as – a public or private street, road or thoroughfare to which public access is available on a continuous or substantially continuous basis to vehicles or pedestrians or both and includes:

- a bridge, viaduct or subway; or
- an alley, laneway or walkway
- Road Authority means - *Road Traffic Act 1961*
- an authority, person or body that is responsible for the care, control or management of a road; or
- any person or body prescribed by the Regulations for the purposes of this definition, in relation to specified roads or specified classes of roads.

Road Infrastructure - *Road Traffic Act 1961*:

a) a road, including its surface or pavement; and
b) anything under or supporting a road or its surface or pavement and maintained by a Road Authority; and
c) any bridge, tunnel, causeway, road-ferry, ford or other work or structure forming part of a road system or supporting a road; and
d) any bridge or other work or structure located above, in or on a road and maintained by a Road Authority; and
e) any traffic control devices, railway or tramway equipment, electricity equipment, emergency telephone systems or any other facilities (whether of the same or a different kind) in, on, over, under or connected with anything referred to in paragraphs (a)–(d); and
f) anything declared by the regulations to be included in this definition, but does not include anything declared by the regulations to be excluded from this definition

Road Manager

- in relation to a Private Road—means the owner, or other person responsible for the care, control and management, of the road;
- in relation to any other road—means an authority, person or body responsible for the care, control or management of the road.
WHAT IS AN INTERFACE AGREEMENT?

An Interface Agreement is a written agreement that is made between rail infrastructure managers and road managers and sets out a mutual understanding and arrangement for the management of risks to safety at a shared railway crossing interface.

As a minimum, an interface agreement must include the following provisions:

- identification and assessment of the risks and measures to manage those risks;
- the evaluation, testing, and where appropriate, revision of those measures;
- the respective roles and responsibilities of each party to the agreement in relation to those measures;
- procedures by which each party to the agreement will monitor and determine whether the other party complies with its obligations under the agreement;
- a process for keeping the agreement under revision and how it will be conducted and implemented.

An effective interface agreement will also specify detail of assets in the agreement and the responsibilities of the parties, such as:

- road signage, advance warning signs;
- fencing and barriers;
- railway signalling;
- traffic signalling;
- road markings;
- road pavement design (road width, surface treatment, rumble strips) and roadside infrastructure.
RAIL SAFETY NATIONAL LAW (SOUTH AUSTRALIA) ACT 2012

The Rail Safety National Law (South Australia) Act 2012 does not require rail infrastructure managers or road managers to immediately implement infrastructure upgrades at rail or road crossings. Rather, the rail safety law focuses on ensuring that rail infrastructure managers and road managers understand the interface risks and have agreed on and documented the approach to be taken to manage the risks.

Interface Coordination – rail infrastructure and private roads

The objective of the interface coordination provisions Section 107 and 108, obliges rail transport operators and road authorities to identify and assess, so far as reasonably practicable, risks to safety that arise from the existence of any rail or road crossing and to manage those risks by entering into an interface agreement.

Under Section 107 (3) - The requirement to seek to enter into an Interface Agreement does not authorise or require a road manager of a road to “act inconsistently with, or without regard to the functions, obligations or powers conferred on it by or under an Act or law”. This means for road managers, Acts such as the Highways Act 1926 or the Local Government Act 1999 will override any obligations under the Rail Safety National Law Act where there are inconsistencies.

Refuse or fail to enter into an interface agreement

Where a rail infrastructure manager or road manager unreasonably refuses or fails to enter into an interface agreement or is unreasonably delaying the negotiations of an agreement, the Regulator may give notice to the parties to comply under Sect 110 of Act.

Compliance with any such direction is mandatory and not doing so could incur penalties under the Rail Safety National Law (South Australia) Act 2012.

Register of interface agreements

Under Section 111 of Rail Safety National Law (South Australia) Act 2012, rail infrastructure managers and responsible road managers are required to keep a register of their interface agreements; not doing so could incur penalties.
RAILWAYS (OPERATIONS AND ACCESS) ACT 1997

Under Section 13 of the Railways (Operations and Access) Act 1997, a railway operator:

(a) must maintain any road on which it places fixed railway infrastructure, whether placed over, under, along or across that road before or after the commencement of this Division, to the extent that the fixed railway infrastructure, or any railway service operated on the fixed railway infrastructure, causes or contributes to the deterioration of the road; and

(b) must keep in good condition and repair—

(i) so much of a road that lies between the rails of any railway track owned or operated by the operator; and

(ii) so much of a road that lies within the prescribed distance beyond the rails on each side of any railway track owned or operated by the operator.

"Prescribed distance" means, in relation to any railway track, 1 metre or such other distance as may be reasonably necessary to allow a smooth crossing of the railway by vehicles normally crossing at that place.

WORK HEALTH AND SAFETY ACT 2012

Council must ensure it meets all legislative requirements in relation to Work Health and Safety when working at rail or road crossings. This includes the provision of a safe working environment and safe systems of work.

Particular areas of note for this type of work are (but not limited to):

- **Work Health and Safety Act 2012**
 - Section 19 – Primary duty of care
 - Section 46 – Duty to consult with other duty holders

- **Work Health and Safety Regulations 2012**
 - Chapter 3 Part 1 - Managing risks to health and safety
 - Chapter 6 - Construction work

"High risk construction work" means construction work that is carried out on, in or adjacent to a road, railway, shipping lane or other traffic corridor that is in use by traffic other than pedestrians; or is carried out in an area at a workplace in which there is any movement of powered mobile plant.

LOCAL GOVERNMENT ACT 1999

- 209—Ownership of fixtures and equipment installed on public roads
- 212—Power to carry out roadwork
- 221—Alteration of road

ROAD TRAFFIC ACT 1961

As per Sect 212 of the Local Government Act 1999, a council must, in carrying out roadwork, comply with any relevant requirement under the Road Traffic Act 1961. Local Government would follow all the requirements as per familiar operations in relation to road management.
You may have already been approached by a rail infrastructure manager in your region to enter an interface agreement. Parties to an Interface Agreement will include rail transport operators and road authorities. Most Interfaces will comprise of two parties. However, multi-party agreements may apply where an interface consists of multiple tracks (more than one rail operator), and the adjoining boundary between two Councils and/or other road authorities.

The following steps provide a foundation to completing the template interface agreement:

- Identify the railway crossings in your Council region;
- Collaborate with the rail infrastructure manager (and any other relevant party) to form the interface agreement;
- Identify any dormant or disused crossings that can be closed;
- Commence the risk management process for each crossing.

An interface agreement will contain the following schedules which will set out the details of the interface location, infrastructure, responsibilities and contacts referenced in the Agreement.

Schedule 1 – Related documents – This is where engineering and technical standards, guidelines and operating instructions are listed by all parties to the agreement. This information can provide a reference point for any activity conducted at the interface.

Schedule 2 – Register of crossing (Interfaces) covered by the agreement – All level crossings/ interfaces are listed in this schedule with clear identification and reference to each party to the agreement.

Schedule 3 – General maintenance responsibilities – Responsibility for the maintenance of infrastructure or interface element is agreed to and listed in this schedule together with any relevant standards.

Schedule 4 – Identification, assessment and management of risks – Risk identification and assessment is agreed and recorded together with the responsible parties to manage the risks. This may include diagrams to assist with clarification.

Schedule 5 – Communication and contacts – Contact information for each party is recorded to provide a central point of communication in relation to the Interface management.

Schedule 6 – Definitions, notes or addendums – Additional reference material relevant to the agreement is to be attached in this section.
SCHEDULE 1 – RELATED DOCUMENTS

All relevant references are to be listed, maintained and used in relation to the Interfaces. These will typically be categorised in by the following:-

- WHS policies & Procedures
- Engineering and technical standards, guidelines and operating instructions
- Legislation, Standards & Code of Practice

WHS Policies & Procedures

Entering the rail corridor will require employees and contractors to adhere to WHS policies and procedures of the rail infrastructure manager. Any such reference should be listed in Schedule 1. Equally, the road manager should list any relevant references for the rail infrastructure manager.

Prior to commencing any works within the rail corridor, a road manager must notify the rail infrastructure manager of the proposed work and comply with the requirements of the rail infrastructure manager.

To this end, Council workers are not permitted to enter any ‘danger zone’ in a rail corridor (refer to Figure 1.) without required certification and a Rail Safety Officer.

In relation to the protection of workers working on or around the rail corridor; the Danger Zone typically extends 3m horizontally and vertically from the outermost rail or electrification infrastructure.

Figure 1 Example layout of the Danger Zone and Safe Places in a rail corridor

No maintenance activities (including the manoeuvring of plant and equipment) must be conducted within the railway danger zone without first notifying the Rail Transport Operator. To gain a working ‘access licence’ to the Danger Zone, notice must be given to the Rail Infrastructure Manager who will then appoint a Rail Safety Officer. All work must be undertaken under the direction of the Rail Safety Officer. Furthermore, any employees and contractors working in the Danger Zone must attend and pass an approved Track Safety Awareness Training Course.
For inspection purposes only, you may enter the Danger Zone only if:

- you have undertaken the relevant rail authority track safety awareness training and have received your certificate of competency, which must be carried with you;
- or alternatively, a competent Rail Safety Worker / Protection Officer must be present to enter the Danger Zone.

Refer to ARTC or DPTI Rail Network Access manuals for further information when entering / working in the rail corridor.

Adelaide Metropolitan Passenger Rail Network Access Manual
Business Rules for Working in ARTC Rail Corridor - HR08-003
ARTC - Protocol for Entering the ARTC Rail Corridor SP-05-02
ARTC - Planning Work in the Rail Corridor - ANWT-300
ARTC - Walking in the Danger Zone - ANGE-200

Engineering and technical standards, guidelines and operating instructions

It is expected that rail infrastructure managers and road managers, prior to commencing any works that may impact on road traffic will undertake works and any work site traffic management in accordance with the applicable Engineering and technical standards, guidelines and operating instructions.

Example may include, but not limited to:-

- Road design and traffic control standards
- Engineering and structural operating instructions
- Inspection procedures
- Risk Management guidelines
SCHEDULE 2 – REGISTER OF INTERFACES

The names, identification reference and locations of crossings should be recorded in Schedule 2 along with the owner of the road and rail infrastructure.

To support a common approach across South Australia, a state-wide Level Crossing Management (LXM) database contains information that can assist with the risk assessment and management of level crossings. It is principally focused on capturing up-to-date information on level crossings with a primary focus on Risk and consequence calculations using the national ALCAM model.

The LXM / ALCAM database will be available to road and rail infrastructure managers through a secure website.

Login to Level Crossing Management System

Authorised users will be able to search for Railway Crossings by a range of search criteria, to identify the national railway crossing reference number (RX#). The information available will assist in the preparation of a site assessment.

Information will include:
- Names of Rail and Road authorities
- Control details
- Road geometry information
- Vehicle and rail traffic details
- Visibility
- Key Risk flags

SCHEDULE 3 - GENERAL MAINTENANCE RESPONSIBILITIES

Rail infrastructure managers and road managers have a common responsibility to manage risks to safety so far as is reasonably practicable, that may arise at the rail-road interface. In South Australia, there is not a comprehensive set of legislatively defined boundaries or responsibilities for infrastructure responsibility at or around rail or road crossings.

Reliance on property/land boundaries (such as the rail corridor) can lead to a skewed arrangement between parties as property boundaries are not consistently defined at rail or road crossings.

The following does not represent exhaustive lists of responsibilities but serves to guide rail infrastructure and road managers in determining where responsibilities should fall.
The rail infrastructure manager is typically responsible for the:

- Rail infrastructure;
- the rail transport corridor including road pavement between the tracks and at least the “prescribed distance” from the outside tracks;
- primary warning devices including:
 - active control devices at the crossing itself that control the movement of vehicular or pedestrian traffic across a railway crossing such as flashing signals, gates (including gates at pedestrian mazes) and barriers where these devices are activated prior to and during the passage of a train through the crossing;
 - passive control devices at the crossing itself that control the movement of vehicular or pedestrian traffic across a railway crossing by signs or devices, none of which are activated during the approach or passage of a train, and which relies on the road user, including pedestrians detecting the approach or presence of a train by direct observation; and
 - line of sight along the rail corridor.

The road manager is typically responsible for the:

- active advance warning devices provided in advance of a crossing to supplement railway crossing flashing signals;
- advance warning signage – all other signs and pavement markings on approaches to crossings;
- line of sight of trains along the road corridor (e.g. vegetation responsibilities);
- pavement markings associated with level crossings such as ‘Rail X’, stop line, give way line, no overtaking lines etc.

Further information and guidance on the allocation of infrastructure and maintenance responsibilities at road or rail crossings with relevant diagrams, photographs, engineering standards and technical or engineering drawings should be attached to or referenced in Schedule 3 of the Interface Agreement.

Standards and compliance

Road works being undertaken by a rail infrastructure manager or road manager on or about a rail or road crossing must follow the instructions under the Road Traffic Act 1961 and the relevant Australian Standard, for the use of traffic control devices for the control of road traffic through work sites and for the protection of workers.

The rail infrastructure manager and responsible road manager must agree that the standards applicable for road/rail interfaces are provided for in Schedule 1.
SCHEDULE 4 - IDENTIFICATION, ASSESSMENT AND MANAGEMENT OF RISK

Ideally, the risk identification and assessment should be undertaken jointly, rather than duplicate the risk identification and assessment process. Alternatively, there may be a disproportionate level of expertise and resources to undertake the risk identification and assessment on one side relative to the other. Risk identification and assessment may be undertaken separately with either party adopting the other party’s identification and assessment.

Identification

This could be achieved by:

- Reviewing the existing Australian Level Crossing Assessment Model (ALCAM)
- Checking against any changes in the use or application of the infrastructure.
- Identify any additional controls to manage identified risks relating to pedestrian, rail or road crossings, so far as is reasonably practicable:
 - identifying who is responsible for implementing the controls and maintenance schedules
 - identifying timeframes for implementing the controls
 - record this information in Schedule 4 — Identification, assessment and management of risk.
- Identify ongoing risk management review processes, including communication protocols

Assessment

The Risk Assessment process must ensure, so far as is reasonably practicable, that all considerations are made to mitigate each risk identified in Schedule 4.

A Risk Management Toolkit is attached to this document to provide a framework based on the AS/NZS ISO 31000:2009 Risk management—Principles and guidelines.

The Risk Assessment tool focuses on the key areas of concern for the Road Corridor:

- Line of sight
- Advanced Warning (passive and active)
- Road pavement (condition)
- Yellow Box marking
Management

A Risk Register should be maintained, and should include a summary description of each control measure for identified hazards or exposures. If considered necessary, clarification of the intended controls will be referenced elsewhere in the Safety Management System ("SMS") or attached to the risk register to ensure allocated personnel are clear on the required action or controls to be put in place or maintained.

Council will maintain a risk register which includes;

a) Comprehensive listing of identified hazards
b) Risk associated with each hazard (per use of risk matrix)
c) Control measures (summary or reference to details)
d) Person nominated to co-ordinate the controls
e) Key engineering, operational & maintenance standards
f) Any relevant cross referencing to SMS or regulations.

Further assistance in determining the appropriate means of managing a level crossing can be obtained from the DPTI Level Crossing Unit. (railcommissionerinterface@sa.gov.au)

Monitor and review

New risk controls may be identified as necessary, through the process of identifying and assessing safety risks. Where these risk controls cannot be immediately implemented, a timetable for their implementation should be agreed on between the rail infrastructure manager and responsible road manager and recorded.

The relevant Manager(s) shall check the effectiveness of the selected controls and that new hazards have not been introduced by:

- Monitoring and evaluating controls for effectiveness.
- Recommencing the risk assessment process if new hazards are identified.
- Including a review of any controls implemented into workplace inspections, as relevant.
- Communicating the outcomes of the risk assessment process within the department and across the organisation as required.
- Retaining the completed risk assessment form.

SCHEDULE 5 – COMMUNICATIONS AND MEETINGS

An up to date contact list for each party to the agreement would provide direct access to key representatives for meeting arrangements, assessment reviews or coordinate works at a particular interface. Details of the parties’ representatives, for the purposes of the interface agreement and emergency contact details should be recorded in Schedule 5.

It is expected that each party will report annually to the other party, or at such times the party may agree, to review the provisions of the agreement and the adequacy of safety risk identification, assessment and management concerning the assets listed in Schedule 4.
DORMANT, DISUSED AND CLOSED RAIL (NON-OPERATIONAL) CORRIDORS

A **dormant rail corridor** is a railway corridor or section of corridor that no longer carries operational traffic; however it is still leased by a rail owner/operator and remains their responsibility. As a first step, with the approval of the rail owner, passive controls (Stop and Give Way signs) may be removed to minimise inconvenience to road users and replaced with the “Railway Crossing Not in Use” sign. Alternatively, subject to agreement with the applicable road and rail authority the same treatment as a disused rail corridor may be applied.

A **disused rail corridor** is one that has been handed back to the Minister for Transport or the Minister for Environment and Heritage. The treatment for a disused corridor is to remove the traffic control at the road/rail interface including all advance warning signage and pavement markings. Any residual hazards as a result of the rail tracks remaining e.g. humps or bumps or rough surfaces will need to be addressed. To determine if a rail corridor is disused contact the Rail Portfolio Unit of Property Planning and Management Services Section.

In both dormant and disused corridors, generally the rail infrastructure remains in place (rail tracks). Where there is an active control at the road/rail interface the active control assembly will also remain in place unless it poses a hazard to road users.

A **closed corridor** is one that has been handed back to the Minister for Transport or the Minister for Environment and Heritage. All traffic control devices prior to and including at the level crossing have been removed. Prior to the removal of any traffic control devices associated with the level crossing, contact will need to be made with the Rail Land Portfolio Unit and the Rail Policy and Investment Section.

In the case of a disused or closed rail corridor, the road manager (there is unlikely to be a rail infrastructure manager in this situation) is encouraged to:
- Remove all signage, pavement marking and non-frangible materials, with Stop signs removed as a first priority
- Retain active level crossing installations
- Install necessary warning signs for road users where there is a residual risk (such as a road hump or non-frangible hazard that remains on the roadside)

In the case of dormant rail corridors, rail infrastructure managers and road managers are encouraged to follow the same approach as for a disused rail corridor. However, consideration could be given to covering, rather than removing, signage if operational requirements of the railway would make the removal and future reinstatement of signage impracticable. Where this is undertaken, road and rail infrastructure manager should consult and agree on this approach.

Further assistance in determining the appropriate means of managing a level crossing on a dormant/disused rail corridor can be obtained from the DPTI Level Crossing Unit. (railcommissionerinterface@sa.gov.au)
CLOSURE OF RAIL OR ROAD CROSSINGS

In South Australia approximately two thirds of all level crossings have passive control. Many of the passive level crossings occur on unsealed local government roads with very low traffic volumes and relatively high speed rail traffic. Road and rail infrastructure managers are encouraged to give consideration to rationalising the number of crossings where there is an opportunity to do so with minor amenity or travel time impact for the local community. Closures in these circumstances potentially provide a significant improvement in safety for the wider community.

Road and rail infrastructure managers are also encouraged to actively consider the closure of level crossings where an unacceptable level of risk is identified through:

(a) identification and assessment of risks to safety arising from the existence or use of a rail or road crossing; and

(b) consideration of the crossings crash or near miss history"

When reviewing the need to retain or close a level crossing, the following factors should be considered:

- type and number of vehicles per day using the crossing;
- reasonable alternate route within proximity;
- cost of improvements required on alternative route;
- special circumstances e.g. impact on local business;
- issues identified by stakeholders;
- traffic management for closed road(s);
- land use or treatments of any allotments freed up by the level crossing closure.

Typically the closure of a level crossing is a process that should be managed by the relevant road manager, with the assistance of the rail infrastructure manager. The process should involve:

- detailed site investigation;
- detailed stakeholder consultation;
- engagement of expert advice as required e.g. detailed traffic study, design of alternate routes;
- consideration and management of safety improvements required at alternative/adjacent crossings within the same precinct;
- engineering works required to decommission the site e.g. gates or barriers, rail signalling changes, road works and signage (including 'Change Traffic Conditions Ahead');
- consideration of how to address objections to crossing closure proposals.

(Note: The Roads (Opening and Closing Act) 1991 and Roads (Opening and Closing) Regulations 2006 provides for the legal process of permanent closure of a road across a railway line.)
NEW LEVEL CROSSINGS

As level crossings introduce risks to safety for both road and rail users, the introduction of new or additional crossings is discouraged in South Australia.

Rail infrastructure managers and road managers are encouraged to adopt a policy approach that aligns with the following principles:

- No new level crossings – The first option to be considered in all cases should be grade separation where road and rail need to cross. Justification as to why a new crossing location cannot be grade separated should be made under the principles of needing to manage the associated risks so far as is reasonably practicable.
- No net increase in the number of level crossings – Where grade separation is demonstrably not a feasible option and a new crossing must be constructed, then at least one existing crossing in the local council area should be closed.
- All costs met by the proponent – All costs for design and construction, including any associated works on the road network, should be met by the proponent of the new crossing (which may not be the road or rail infrastructure manager).
INFRASTRUCTURE CHANGES

Any changes in infrastructure or operation contemplated by a rail infrastructure or road manager that may increase the risk associated with operations of the crossing, should be agreed to by the other.

Changes to the risk profile at road or rail crossings can be triggered by:

- changes in rail speed, usage or any other change to rail traffic, including type and/or volume of rail traffic;
- changes in rail infrastructure;
- changes in road speed, usage or any other change to road traffic, including type and/or volume of road traffic;
- changes in road infrastructure;
- changes in both road and rail traffic;
- changes in pedestrian activity using the crossing;
- new access and land developments adjacent to level crossings introducing changed traffic patterns;
- construction of buildings and fences restricting sight distance and visibility; and
- degraded operations.

Road and rail infrastructure managers are expected to keep each other informed of and consult on changes that are being initiated by them. Road and rail infrastructure managers should also consult on changes that are caused by other parties that may impact on the safe operation and management of road or rail crossings.

Consultation with stakeholders during change at an interface is an integral part of managing change and should be included, where reasonably practical, at regular intervals throughout the management of change process.

During any consultation process, the objectives are to:

- exchange all information necessary for identification and assessment of the options for change, and the possible impact of each option;
- ensure that all relevant personnel of the rail infrastructure manager and the road manager and other affected persons are aware of the proposed change, have an opportunity to comment on safety aspects and act consistently to achieve a safe outcome;
- ensure different perspectives are reflected in the monitoring and review of the proposed change; and
- promote ownership among affected persons for safety and successful implementation of the change.
STREET LIGHTING

Street lighting in the vicinity of level crossings is often part of the normal street lighting and has not been installed specifically to address risks at the level crossings.

Street lighting infrastructure in South Australia is typically owned by one of the following authorities:
- SA Power Networks (SAPN)
- Local Government
- Department of Planning, Transport and Infrastructure (DPTI)

At this time none of the above authorities undertake a regular inspection regime to confirm lighting is working as reliance is largely placed on public reporting of faults. There is a state wide reporting system utilised for the reporting of street light faults that is managed by SAPN through its website:

It is expected that as part of the interface agreement that road and rail infrastructure managers that have either collectively or individually installed street lights have assigned maintenance responsibilities for the lighting infrastructure.

In these circumstances, road and rail infrastructure managers are encouraged to jointly develop a monitoring and maintenance regime that aims to ensure, so far as is reasonably practicable, that the lighting is maintained in working order.
Disclaimer

This Manual has been written as a guide only and has no legal force. This Manual does not displace statutory requirements detailed in existing or future legislation nor does it displace existing or future Australian Standards. LGA Mutual Liability Scheme (LGAMLS) recommends that this manual is read in conjunction with the current Australian Standards and Legislation.

The accuracy of information in this Manual is not guaranteed and no responsibility is accepted by the LGAMLS or its officers for any loss or damage caused by reliance upon this Manual, as a result of any error, omission, misdescription or misstatement therein, whether caused by negligence or otherwise.